

| Grade <br> Awarded | Mark Required |  | $\%$ candidates achieving grade |
| :---: | :---: | :---: | :---: |
|  | $(/ 100)$ | $\%$ |  |
| A | $70+$ | $70 \%$ | $42.5 \%$ |
| B | $58+$ | $58 \%$ | $20.6 \%$ |
| C | $46+$ | $46 \%$ | $16.7 \%$ |
| D | $34+$ | $34 \%$ | $11.9 \%$ |
| No award | $<34$ | $<34 \%$ | $8.3 \%$ |



| 2022 National 5 Chemistry Marking Scheme |  |  |  |
| :---: | :---: | :---: | :---: |
| MC <br> Qu | Answer | \％Pupils Correct | Reasoning |
| 1 | $C$ |  | ®A Hydrogen H has an atomic number of 1．Hydrogen is a non－metal． ®B Arsenic As has an atomic number of 33．Arsenic is a non－metal． $\nabla C$ Rhodium Rh has an atomic number of 45 ．Rhodium is a metal．区D Radon Rn has an atomic number of 86 ．Radon is a non－metal． |
| 2 | $B$ |  | $\boxtimes A$ Protons are positive and neutrons are neutral $\therefore$ overall this would be positive． $\boxtimes B$ Atoms are neutron because no．of protons equals no of electrons $\boxtimes C$ number of protons plus neutrons is greater than number of electrons $\boxtimes D$ number of electrons plus protons is greater than number of neutrons |
| 3 | $A$ |  | $\checkmark$ A weak forces of attraction are found between molecules not inside molecules区B strong forces of attraction are found inside molecules not between molecules Q $C$ weak forces of attraction are found between molecules not inside molecules区D strong forces of attraction are found inside molecules not between molecules |
| 4 |  |  | Q A Adding more solvent would dilute the solution and decrease the concentration凹B Adding more solute would increase the concentration of the solute dissolved $\boxtimes C$ Adding solute increases concentration．Adding solvent decreases concentration खD Adding more solvent would dilute the solution and decrease the concentration |
| 5 | $B$ |  | XA The shape is similar to the shape of $\mathrm{CH}_{4}$ and is called tetrahedral $\nabla B$ The shape is similar to the shape of $\mathrm{H}_{2} \mathrm{O}$ and is called angular区C The shape is similar to the shape of HCl and is called linear D The shape is similar to the shape of $\mathrm{NH}_{3}$ and is called trigonal pyramidal |
| 6 | $A$ |  | $\checkmark$ A Electronegativity of $\mathrm{O}=3.4$ \＆Electronegativity of $\mathrm{H}=2.2 \therefore$ Electronegativity Difference $=1.2$ <br> ख $B$ Electronegativity of $N=3.0$ \＆Electronegativity of $H=2.2 \therefore$ Electronegativity Difference $=0.8$ <br> ख $C$ Electronegativity of $C=2.6$ \＆Electronegativity of $\mathrm{H}=2.2 \therefore$ Electronegativity Difference $=0.4$ <br> 区D Electronegativity of $C=2.6$ \＆Electronegativity of $0=3.4 \therefore$ Electronegativity Difference $=0.8$ |
| 7 | $A$ |  | $\checkmark$ A Copper forms at negative electrode and chlorine gas forms at positive electrode囚 $B$ Copper forms at negative electrode as positive $\mathrm{Cu}^{2+}$ ions move to negative electrode囚C Chlorine gas forms at positive electrode as negative $\mathrm{Cl}^{\prime}$ ions move to positive electrode $\boxtimes D$ Chlorine gas forms at positive electrode as negative $\mathrm{Cl}^{-}$ions move to positive electrode |
| 8 | $D$ |  | XA Calcium oxide cannot be formed by the neutralisation of an acid <br> 囚B Hydrogen nitrate cannot be formed by the neutralisation of an acid <br> 区C Sodium hydroxide cannot be formed by the neutralisation of an acid． <br> $\square$ D Potassium ethanoate is a salt formed by the neutralisation of ethanoic acid by a base like sodium hydroxide |
| 9 | $D$ |  | QA $\mathrm{pH}=3$ is acidic and ammonia dissolves in water to form an alkali with $\mathrm{pH}>7$ Q $\mathrm{pH}=5$ is acidic and ammonia dissolves in water to form an alkali with $\mathrm{pH}>7$ $\boxtimes C \mathrm{pH}=7$ is acidic and ammonia dissolves in water to form an alkali with $\mathrm{pH}>7$ $\nabla \mathrm{DH}=9$ is alkaline and ammonia dissolves in water to form an alkali with $\mathrm{pH}>7$ |
| 10 |  |  | $\boxed{~ A ~ M e t h a n e ~} \mathrm{CH}_{4}$ burns to form $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ ．The $\mathrm{CO}_{2}$ would turn limewater milky． $\boxtimes \mathrm{B}$ Carbon Monoxide CO burns to form $\mathrm{CO}_{2}$ ．The $\mathrm{CO}_{2}$ would turn limewater milky． $\boxtimes C$ Hydrogen $\mathrm{H}_{2}$ burn to form $\mathrm{H}_{2} \mathrm{O}$ only． $\mathrm{H}_{2} \mathrm{O}$ would condense as a colourless liquid． QD Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$ burns to form $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ ．The $\mathrm{CO}_{2}$ would turn limewater milky． |
| 11 | $C$ |  | खA $C_{4} H_{10}$ molecule is butane and has a boiling point of $-1^{\circ} \mathrm{C}$ <br> खB $C_{4} H_{8}$ molecule is but－1－ene and has a boiling point of $-6^{\circ} \mathrm{C}$ <br> $\downarrow C \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$ molecule is butanoic acid and has a boiling point of $164^{\circ} \mathrm{C}$ <br> 区D $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ molecule is butan－2－0 and has a boiling point of $100^{\circ} \mathrm{C}$ |
| 12 | $D$ |  | A molecule has no $C=C$ double bond and would not decolourise bromine solution QB molecule has no $C=C$ double bond and would not decolourise bromine solution $\boxtimes C$ molecule has no COOH Carboxyl group and would not produce an acidic pH |


|  |  | $\checkmark \mathrm{D}$ Carboxyl－ COOH group has acid $\mathrm{pH} \& C=C$ double bond decolourises bromine solution |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Structure |  |  |  |  |  |
|  |  | Formula | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ |  | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ | $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ |  |
|  |  | Relationship | If $n=3$ then $2 n=6$ |  | If $n=4$ then $2 n=8$ | If $n=5$ then $2 n=10$ |  |
|  |  | General Formula | $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}$ |  | $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}$ | $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}$ |  |
| 14 | $B$ | Cycloalkanes have a general formula of $\mathrm{C}_{n} \mathrm{H}_{2 n}$ ． |  |  |  |  |  |
|  |  | no of Carbons $C_{n}$ |  | $\mathrm{C}_{3}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{5}$ |  |
|  |  | Formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$ |  | $\mathrm{C}_{3} \mathrm{H}_{6}$ | $\mathrm{C}_{4} \mathrm{H}_{8}$ | $\mathrm{C}_{5} \mathrm{H}_{10}$ |  |
|  |  | gfm |  | x12）＋（6x1）＝ 42 | $(4 \times 12)+(8 \times 1)=56$ | $(5 \times 12)+(10 \times 1)=70$ |  |
| 15 | $A$ | $\checkmark$ A metallic bonding：attraction between positive ions and delocalised electrons区 $B$ the positive ion in metallic bonding is formed by the nucleus and the inner shells ख $C$ ionic bonding：attraction between positive ions and negative ions凹D covalent bonding：attraction between a shared pair of electrons and two nuclei |  |  |  |  |  |
| 16 | $B$ | QA melting point of $98^{\circ} \mathrm{C}$ is below the required $600^{\circ} \mathrm{C}$ $\nabla B$ Melting point above $600^{\circ} \mathrm{C}$ and density below $3 \mathrm{~g} \mathrm{~cm}^{-3}$ $\boxtimes C$ density of $6.52 \mathrm{~g} \mathrm{~cm}^{-3}$ is above the required density of $3 \mathrm{~g} \mathrm{~cm}^{-3}$凹D density of $8.96 \mathrm{~g} \mathrm{~cm}^{-3}$ is above the required density of $3 \mathrm{~g} \mathrm{~cm}^{-3}$ |  |  |  |  |  |
| 17 | $A$ | $\square$ A aluminium is extracted from ore by electrolysis and $\mathrm{Al}_{2} \mathrm{O}_{3}$ is insoluble in water खB calcium oxide is soluble in water and forms an alkali in water <br> 区C copper metal is extracted by heating copper ore with carbon／carbon monoxide囚D lead metal is extracted by heating lead ore with carbon／carbon monoxide |  |  |  |  |  |
| 18 |  | 区A electrons travel through connecting wires not the electrolyte solution <br> 囚B electrons travel through connecting wires not the electrolyte solution <br> $\boxtimes C$ electrons travel from aluminium to nickel as aluminium is higher than nickel in ECS <br> VD electrons travel from aluminium to nickel through the connecting wires as aluminium is higher than nickel in ECS |  |  |  |  |  |
| 19 | $B$ | Electrochemical <br> Series | Magnesium | Zinc（D） | Iron（A） | Tin（C） | Lead（B） |
|  |  | Voltage | smallest Voltage <br> largest Voltage |  |  |  |  |
| 20 | $C$ |  |  |  |  |  |  |
| $21$ | $A$ |  |  | Repeating U |  | mer | - |
| 22 | $B$ | खA iron is the catalyst in the Haber Process not the Ostwald Process $\checkmark$ B platinum is the catalyst in the Ostwald process which produces nitric acid $\mathrm{HNO}_{3}$ $\boxtimes C$ iron is the catalyst in the Haber Process not the Ostwald Process |  |  |  |  |  |


|  |  | D ammonia $\mathrm{NH}_{3}$ is the product of the Haber Process not the Ostwald Process |
| :---: | :---: | :---: |
| 23 | $C$ | XA All ${ }^{222}$ Rn atom have same half-life due to having the same proton : neutron ratio खB All ${ }^{222}$ Rn atom have same half-life due to having the same proton: neutron ratio $\nabla C^{222} \mathrm{Rn}$ has $\mathrm{p}: \mathrm{n}$ ratio of $136: 86$ and the half-life is the same for all atoms of ${ }^{222} \mathrm{Rn}$ खD The intensity of the radiation would change by having different size plants but the time taken for the radiation to halve (half-life) would remain the same. |
| 24 | D | XA alpha particles are stopped by paper $\therefore$ would not be able to escape through skin区B long half-life would result in radiation escaping for potentially years to come. <br> $\boxtimes C$ alpha particles are stopped by paper $\therefore$ would not be able to escape through skin <br> $\nabla D$ an isotope with beta particles released which are able to escape the skin and a short half-life is the best combination for this treatment. |
| 25 | $C$ | Q A Beaker is an inaccurate method to measure volume. <br> 囚B Measuring cylinder is not as accurate as a $25 \mathrm{~cm}^{3}$ pipette for measuring volume <br> $\boxtimes C$ Most accurate method for measuring $25 \mathrm{~cm}^{3}$ is to use a $25 \mathrm{~cm}^{3}$ pipette. <br> खD Conical flask is an inaccurate method of measuring volume as it has no markings |





| $9 a$ | Answer including one from: | Same | Atomic number Number of protons |  | Different |  | Mass number Number of neutrons |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9b | Full outer shell | Atoms with a full outer shell are very stable and therefore unreactive. |  |  |  |  |  |  |
|  |  | Element | Helium N |  | Argon | Krypton | Xenon | Radon |
|  |  | $\underset{\substack{\text { Electron } \\ \text { Arrangenent }}}{\substack{\text { chen }}}$ | ${ }^{2}$ |  | 2,8,8 | 2,8,18,8 | 2, 8,18,18,8 | 2.8,18,32,18, |
| 9c(i) | Equation showing: | $\mathrm{XeF}_{2}+\mathrm{F}_{2} \longrightarrow \mathrm{XeF}_{6}$ |  |  |  |  |  |  |
| 9c(ii) | covalent molecular | Xenon hexafluoride is covalent as it contains only non-metals atoms in its structure. The melting point of $49^{\circ} \mathrm{C}$ indicates that weak intermolecular attractions are found between molecules giving a covalent molecular structure. The melting point is too low for a covalent network structure. |  |  |  |  |  |  |
| 9C(iii) $A$ | 35 | Catalysts speed up reactions without being used up in that reaction. The same mass of catalyst at the start remains at the end. |  |  |  |  |  |  |
| 9C(iii)B | £277.60 | 35 g of catalyst must be obtained from four 10 g tubs. <br> 1 tub catalyst $=£ 69.40 \quad \therefore 4$ tubs catalyst $=£ 69.40 \times 4=£ 277.60$ |  |  |  |  |  |  |
| 10a | Answer containing: | Family of compounds with similar/same chemical properties a general formula |  |  |  |  |  |  |
| $10 \mathrm{~b}(\mathrm{i})$ | Hydroxyl group | $-\mathrm{O}-\mathrm{H}$ |  |  |  |  |  |  |
| 10 b (ii) | Secondary |  |  |  |  |  |  |  |
| $10 b$ (iii) | One structure from: | Structure$\begin{gathered} \mathrm{H} H \mathrm{H} H \mathrm{H} \\ \mathrm{H}-\mathrm{c}-\mathrm{c}-\mathrm{C}-\mathrm{C}-\mathrm{OH} \\ \mathrm{H} H \mathrm{H} H \mathrm{H} H \end{gathered}$ |  | Name at <br> pentan-1-01  |  |  |  | Type of Alcohol |
|  |  |  |  | 2 | primary |
|  |  |  |  |  |  |  | 2-methylbutan-1-ol |  |  | 2 | primary |
|  |  | $\begin{gathered} \mathrm{H} \\ \mathrm{HH}+\mathrm{C}_{-} \\ \mathrm{H}-\mathrm{C}-\mathrm{C} \\ \mathrm{H} \\ \mathrm{H} \end{gathered}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{CHH} \\ & \mathrm{CH} \\ & \mathrm{C} \\ & \mathrm{CH}-\mathrm{H} \\ & \mathrm{C}-\mathrm{C}-\mathrm{OH} \\ & \hline \end{aligned}$ | 3-methylbutan-1-0\| |  |  | 2 | primary |
|  |  |  |  | 2,2-dimethylbutan-1-ol |  |  | 2 | primary |
|  |  |  |  | 2-methylbutan-2-01 |  |  | 0 | tertiary |
| $11 a(\mathrm{i})$ | Relights a glowing splint | Gas Oxygen <br> Gas Test relights a glowing splint | $\begin{array}{c\|} \hline \text { Oxygen } \\ \text { relights a glowing splint } \\ \hline \end{array}$ |  | $\begin{aligned} & \text { Hydrogen } \\ & \text { burns with a pop } \end{aligned}$ |  | Carbon Dioxide turns lime water milky |  |



