

Marking Scheme

Grade	Mark R	equired	% candidates achieving gra			
Awarded	(/100)	%	% canalaares	s achieving grade		
A	70+	70%	4	2.5%		
В	58+	58%	2	0.6%		
С	46+	46%	16.7%			
D	34+	34%	11.9%			
No award	<34	< 34%	8	3.3%		
Section:	Multiple	Choice	Extended Answer	Assignment		
Average Mark:	17.2	/25	45.8 /75	No Assignment in 2022		

20)22	Nat	ional 5 Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	С	91	⊠A Hydrogen H has an atomic number of 1. Hydrogen is a non-metal. ⊠B Arsenic As has an atomic number of 33. Arsenic is a non-metal. ☑C Rhodium Rh has an atomic number of 45. Rhodium is a metal. ☑D Radon Rn has an atomic number of 86. Radon is a non-metal.
2	В	83	 ☑ A Protons are positive and neutrons are neutral ∴ overall this would be positive. ☑ B Atoms are neutron because no. of protons <u>equals</u> no of electrons ☑ C number of protons plus neutrons is greater than number of electrons ☑ D number of electrons plus protons is greater than number of neutrons
3	A	46	 A weak forces of attraction are found between molecules not inside molecules B strong forces of attraction are found inside molecules not between molecules C weak forces of attraction are found between molecules not inside molecules b strong forces of attraction are found inside molecules not between molecules
4	С	52	 A Adding more solvent would dilute the solution and decrease the concentration B Adding more solute would increase the concentration of the solute dissolved C Adding solute increases concentration. Adding solvent decreases concentration Adding more solvent would dilute the solution and decrease the concentration
5	В	91	 A The shape is similar to the shape of CH4 and is called tetrahedral B The shape is similar to the shape of H2O and is called angular C The shape is similar to the shape of HCl and is called linear D The shape is similar to the shape of NH3 and is called trigonal pyramidal
6	A	91	 ✓A Electronegativity of O=3.4 & Electronegativity of H=2.2 ∴ Electronegativity Difference = 1.2 ☑B Electronegativity of N=3.0 & Electronegativity of H=2.2 ∴ Electronegativity Difference = 0.8 ☑C Electronegativity of C=2.6 & Electronegativity of H=2.2 ∴ Electronegativity Difference = 0.4 ☑D Electronegativity of C=2.6 & Electronegativity of O=3.4 ∴ Electronegativity Difference = 0.8
7	A	54	 A Copper forms at negative electrode and chlorine gas forms at positive electrode B Copper forms at negative electrode as positive Cu²⁺ ions move to negative electrode C Chlorine gas forms at positive electrode as negative Cl⁻ ions move to positive electrode D Chlorine gas forms at positive electrode as negative Cl⁻ ions move to positive electrode
8	D	35	 A Calcium oxide cannot be formed by the neutralisation of an acid B Hydrogen nitrate cannot be formed by the neutralisation of an acid C Sodium hydroxide cannot be formed by the neutralisation of an acid. D Potassium ethanoate is a salt formed by the neutralisation of ethanoic acid by a base like sodium hydroxide
9	D	54	 ☑A pH=3 is acidic and ammonia dissolves in water to form an alkali with pH>7 ☑B pH=5 is acidic and ammonia dissolves in water to form an alkali with pH>7 ☑C pH=7 is acidic and ammonia dissolves in water to form an alkali with pH>7 ☑D pH=9 is alkaline and ammonia dissolves in water to form an alkali with pH>7
10	С	48	 A Methane CH₄ burns to form CO₂ and H₂O. The CO₂ would turn limewater milky. B Carbon Monoxide CO burns to form CO₂. The CO₂ would turn limewater milky. C Hydrogen H₂ burn to form H₂O only. H₂O would condense as a colourless liquid. D Ethane C₂H₆ burns to form CO₂ and H₂O. The CO₂ would turn limewater milky.
11	С	73	 Image: A C4H10 molecule is butane and has a boiling point of -1°C B C4H8 molecule is but-1-ene and has a boiling point of -6°C C C3H7COOH molecule is butanoic acid and has a boiling point of 164°C D C4H9OH molecule is butan-2-ol and has a boiling point of 100°C
12	D	52	 A molecule has no C=C double bond and would not decolourise bromine solution B molecule has no C=C double bond and would not decolourise bromine solution C molecule has no COOH Carboxyl group and would not produce an acidic pH C arboxyl -COOH group has acid pH & C=C double bond decolourises bromine solution

		1	ir		A 11				
10	Р	70	Structure	н 	ССН	H O H H H	н н-	H O H -CCC- H H	H H CCH H H
13	В	79	Formula	(C₃H6O	C ₄ H ₈ O		C_5H_1	O ₀
			Relationship	If n=3	then 2n=6	If n=4 then 2n	=8 If	^r n=5 the	en 2n=10
			General Formula	0	hH2nO	$C_nH_{2n}O$		C _n H ₂	nO
			Cycloalkanes h	ave a ge	eneral form	ula of CnH2n.			
14	B	59	no of Carbons	Cn	C ₃	C4			C ₅
14	D	57	Formula CnH2	n	C ₃ H ₆	C4H8		C	5 H 10
			gfm	(3	×12)+(6×1) = 42	(4x12)+(8x1)	= 56	(5x12)+(10x1) = 70
			☑A metallic bond	ling: attr	action betwee	n positive ions ar	nd deloca	alised ele	ctrons
15	Δ	84	⊠B the positive i		-	•			inner shells
15	7	07	EC ionic bonding:		•		-		
			ED covalent bond				of electr	ons and	two nuclei
	_		A melting point				1		
16	B	86	☑B Melting point 遼C density of 6.5			•		-3	
	-		ED density of 8.9						
			☑ A aluminium is e						e in water
17	٨	EO	B calcium oxide		•	•			
17	A	58	⊠ C copper metal	is extra	cted by heatin	g copper ore wit	h carbon	/carbon	monoxide
			ED lead metal is	extracte	ed by heating l	ead ore with car	bon/cart	oon mond	oxide
			A electrons trave		-		•		
18		72	B electrons trave	-	-				FCC
10	D	/3	■C electrons trave ■D electrons trave						
			higher than nic						
			Electrochemical	Nagnesium	Zinc (D)	Iron (A)	Tin (d	C)	Lead (B)
	_		Series		\downarrow				
19	B	77		small	est Voltage				
			Voltage						
						largest Voltage			
			0 Br ₂ (l)		+ 2e ⁻	→ 2Br ⁻ (aq)			
			e 50	03 ²⁻ (aq) +	H ₂ O(l)		504 ²⁻ (aq)	+ 2H⁺(₀	_{q)} + 2e ⁻
20	C	81	$\begin{array}{c} \text{Add} \\ \bullet $	O3 ²⁻ (aq) +	H ₂ O(1) + 2e ⁻	→ 2Br ⁻ (aq) +	• 504 ²⁻ (aq)	+ 2H⁺(a	_{q)} + 2e⁻
20	C	01	cancel Br2(1) + Si	$O_{2^{2^{-}}(aq)} +$	H ₂ O(1) +	→ 2Br ⁻ (aq) +	· 50 ²⁻ (m)	+ 2H⁺@	q) + 26
				O ₃ ²⁻ (aq) +			 SO₄²⁻(aq) 		, ,
			Mono				Polymei		4)
					Repeating (CH3 H	СН3 Н	ÇH ₃ H	ÇH₃ Ĥ	
				H ₃	Ĩ Ï		Ĩ, Ĭ		
		00	ċ=-ċ						
21	A	82		=0	Η H	H H	Ĥ Ĥ	Ĥ	
			. [-	c=0	¢≡o	c=0		
			0	1	Ó	Ó	Ó	Ó	
			c	H ₃	CH3	CH3	L CH3	CH3	
			🗷 A iron is the ca	talyst in	the Haber Pro	ocess not the Os	twald Pro	ocess	
22	D	62	☑B platinum is th	•					acid HNO₃
22	В	62	🗷 C iron is the ca	talyst in	the Haber Pro	ocess not the Os	twald Pro	ocess	
			🗷 D ammonia NH3	is the p	roduct of the	Haber Process n	ot the O	stwald P	rocess

23	С	67	 A All ²²²Rn atom have same half-life due to having the same proton : neutron ratio B All ²²²Rn atom have same half-life due to having the same proton : neutron ratio C ²²²Rn has p:n ratio of 136:86 and the half-life is the same for all atoms of ²²²Rn D The intensity of the radiation would change by having different size plants but the time taken for the radiation to halve (half-life) would remain the same.
24	D	55	 A alpha particles are stopped by paper would not be able to escape through skin B long half-life would result in radiation escaping for potentially years to come. C alpha particles are stopped by paper would not be able to escape through skin D an isotope with beta particles released which are able to escape the skin and a short half-life is the best combination for this treatment.
25	С	80	 A Beaker is an inaccurate method to measure volume. B Measuring cylinder is not as accurate as a 25cm³ pipette for measuring volume C Most accurate method for measuring 25cm³ is to use a 25cm³ pipette. C Onical flask is an inaccurate method of measuring volume as it has no markings

202	2 National	50	Cher	mi	str	'y /	Narl	king	Scher	ne
Long Qu	Answer				F	Rec	isoni	ng		
		Radia	tion		Alpha		Be	eta	Gamma	
		Mas	SS		4			C	No mass	3
		Char	rge		2		-1		No charge	
1a (i)	Beta	Stoppe			Paper			inium	Thick lead	
		Deflec	ction T	Towa	rds neg	ative		positive	No defection	
		Use	e	Smol	ke detec	tors	Measuring thickness of paper in paper mill			
1a (ii)	Xenon		131 - 53 -	Ι		>	₀ ₋₁ e	+	¹³¹ 54 Xe	
			Fractio	on	Numbe	er of h	alf-lives			
			1			0				
1b(i)	15 days	1/2				1			ife = 5 days	
		¹ / ₄ ¹ / ₈				2		3 half-liv	ves = 15 days	
		Caesium-13		uld tak	ke 30 veer	-		 original value and some caesium-137 would		7 would
1b(ii)	Caesium-137	remain in tl	he environm	nents f	for over 20	00 years.	The other ra	dioisotopes ha	ve a half-life of in t	
		and the vas		mar		lioisorope		decayed over i 1 mark	2-3 1001115.	
		The axes of the graph All data points plotted accur			ely (within a half					
2a	Graph showing:	have suitable labels box tolerance) with either a line of best fit								
		and u			accessed if linear scales for both axe					
		been provided.								
2b	5.33		Rat	te = -	∆Quant ∆Time	ity z =	<u>48 - 3</u> 4 - 1	2 = 5.33	cm ³ min ⁻¹	
2.	Mass of								gen gas escapes	
2c	flask + contents						neasure th te equatior		eaction by using	change
2d	48	Using the volume o The incr	e same m f hydrog	nass o Ien go mper	of calciu as will be vature wi	m and t e produ ill incre	the same v ced.	olume of wo	ter means the s	
За	ammonia and carbon dioxide	Problem	n Solving	; gat	thering	inforn	nation fro	m a passag	ge	
3b	1.625		3	32.5%	% of 5k	g = ·	32.5 100 × 5	kg = 1.	.625kg	
	hydrogen		lution Type					scription		
3c			dic Solutic tral Soluti				of H⁺ ions of H⁺ ions		entration of OH ⁻ entration of OH ⁻	
	hydroxide		line Soluti				of H ⁺ ions		entration of OH	
3d	Not toxic or flammable							m a passag		
	Contains two	-	•						ements essen	
3e (i)	elements essential to		• •					• •	te (NH4)2HPC	
	healthy plant growth				-	•		d potassiu hree elem	m. A single nu ente	trient
L		rennise		CON	iun oni	y one i	J INUSE T	mee eiem	6113.	

3e(ii)	21.2	gfm (NH ₄) ₂ HPO ₄ : (2x14) + (8x1) + (1x1) + (1x31) + (4x16) = 132g (1 mark) % N = $\frac{(2x14)}{132}$ × 100 = 21.2% (1 mark)
4 a(i)	addition	HBr molecule adds across the C=C double bond by addition reaction.Molecules which add across aMolecules which add across aC=C double bond to form one productC=C double bond to usually form two productF2Cl2Br2I2H2H2H2OHFHCIHBr
4a (ii)	H× Br	
4a (iii)	HCl or hydrogen chloride	$H H \qquad H H = C - C - H \qquad H H = C - C - H \qquad H H = C - C - H \qquad H = C - C - C - C - H \qquad H = C - C - C - H \qquad H = C - C - C - C - H \qquad H = C - C - C - H \qquad H = C - C - C - H \qquad H = C - C - C - C - H \qquad H = C - C - C - H \qquad H = C - C - C - H \qquad H = C - C - C - C - H \qquad H = C - C - C - H \qquad H = C - C - C - H \qquad H = C - C - C - H \qquad H = C - C - C - C - H \qquad H = C - C - C - C - H \qquad H = C - C - C - C - H \qquad H = C - C - C - C - C - C - H \qquad H = C - C - C - C - C - C - C - $
4b(i)	H H—C—Br H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4b(ii)	Vinegar	Pure ethanoic acid (old name acetic acid) is diluted in water to make vinegar.
5	Open Question:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is
6a	2-methylbutane	2-methylbutane Methyl-CH ₃ group on C ₂ Longest carbon chain has four carbons (no C=C double bonds)
6b(i)	Fuel	A fuel is a substance which burns to release heat energy
6b(ii)	C₅H ₁₂ + 8O ₂ ↓ 5CO₂ + 6H₂O	C_5H_{12} + $8O_2 \longrightarrow 5CO_2$ + $6H_2O$
6b(iii)	10.032	heat energy = specific heat capacity x mass x change in Temperature $E_h = c \times m \times \Delta T$ $E_h = 4.18 \text{ kJ kg}^{-1} \circ C^{-1} \times 0.2 \text{ kg} \times 12^{\circ}C$

6b(iv)	thermometer copper 200cm ³ beaker water draught shield Isopentane spirit burner	gfm NaCl = (1)	·22\±(1×35 5) - 22-35 5 -	59 50		
7 a(i)	43.9	no. of mol = vo mass = no. of r	lume x c once	entration = 0.	5 litres X 1.5		0.75mol
7a (ii)	Balance or Weighing Bottle				g mor = 10.2	.9	
7b(i)	106.7	Averag	e Volume =	<u>105 + 107 +</u> 3	- 108 = -	<u>320</u> 3 =	: 106.7°C
7 b(ii)	Table showing:		0	ion (mol l ⁻¹) .5 0 5	Boiling Po 101. 104. 106.	3.0	
7c	Line Graph						
7d	Increase in concentration, increase in boiling point	Problem Solvii	ng: Drawing c	onclusion fro	m table of i	informa	ition
			+ metal oxide copper		salt +	wate	r
0.		sulphuric acid	+ oxide	-> su	ulphate +	water	r
8a	sulphuric acid	sulphuric acid acid sulphuric acid		e →	••• +	water wate water	r
8a 8b	sulphuric acid Hydrogen	acid sulphuric acid acid sulphuric acid acid	 oxide metal hydroxide barium 	$e \rightarrow b$ $\rightarrow s_1$ $e \rightarrow s_2$ $\rightarrow s_3$ $\rightarrow s_4$ $\rightarrow s_4$ $\rightarrow s_4$ $\rightarrow s_4$	salt + salt + ulphate + salt + salt + sodium +	wate	r r r + <mark>carbon</mark> dioxide r + ^{carbon} dioxide
		acid sulphuric acid acid sulphuric acid acid sulphuric acid Sodium carbonate dioxide. When the	 oxide metal hydroxide barium hydroxide metal carbonate sodium carbonate metal exarbonate runs will react with e carbonate runs fizzing stops age 	$e \rightarrow e$ $e \rightarrow e$ e	Ilphate + salt + barium + Ilphate + salt + ilphate + salt + gnesium + Ilphate + oform sodium gwill stop. Mor	wate wate wate wate hydrog sulphate, re carbon	r + carbon dioxide r + carbon dioxide gen gen water and carbon
8b	Hydrogen Don't start to fizz when more carbonate	acid sulphuric acid acid sulphuric acid acid sulphuric acid Sodium carbonate dioxide. When the stirred until the to to fizz showing th	 oxide metal hydroxide barium hydroxide metal carbonate sodium carbonate metal exarbonate runs will react with e carbonate runs fizzing stops age 	$e \rightarrow e$ $e \rightarrow e$ e	Ilphate + salt + barium + Ilphate + salt + ilphate + salt + gnesium + Ilphate + oform sodium gwill stop. Mor	wate wate wate wate hydrog sulphate, re carbon ng carbon	r + carbon dioxide r + carbon dioxide carbon dioxide gen men water and carbon ate is added and

9a	Answer including one from:	Atomic number Same Number of prote	Differ	Mass number ent Number of ne	utrons
9b	Full outer shell	Flectron	eon Argon Kr	ypton Xenon	eactive. Radon 2,8,18,32,18,8
9 c(i)	Equation showing:	XeF ₂	+ F ₂	 XeF₆ 	
9c(ii)	covalent molecular	Xenon hexafluoride is cove structure. The melting poi attractions are found betw structure. The melting poi	nt of 49°C indicates ween molecules givin	that weak intern g a covalent mole	nolecular cular
9c(iii)A	35	Catalysts speed up reaction same mass of catalyst at t	-	•	tion. The
9c(iii)B	£277.60	35g of catalyst must be ol 1 tub catalyst = £69.40		-	7.60
10a	Answer containing:	Family of compounds with			
10b(i)	Hydroxyl group	—O-	-H -C-	OH	
10b(ii)	Secondary	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	The circled carbon sł • 2 carbons • 1 hydrogen • 1 oxygen	nown has attached to	it:
		Structure	Name	Number of hydrogens attached to carbon wit functional group	
		н н н н н н–с–с–с–с–с–ОН н н н н н	pentan-1-ol	2	primary
		Н Н Н Н Н—С—С—С—С—ОН Н Н _Н -Снн	2-methylbutan-1-ol	2	primary
10b(iii)	One structure from:	н Нн-С-нн н Н—С-С-С-С-ОН н н н н	3-methylbutan-1-ol	2	primary
		н нн-снн н—с—с—с—он н _{н-} снн с	2,2-dimethylbutan-1-o	2	primary
		н н ОН _Н H—Ċ—Ċ—Ċ—Ċ—H H H _H ĊнH	2-methylbutan-2-ol	0	tertiary
11a (i)	Relights a glowing splint	Gas Oxygen Gas Test relights a glowing	Hydrogen splint burns with a p	Carbon Di op turns lime wa	

11a(ii)K is in group 1 and forms K* ions. Negative ion must balance the charge of the positive ion \therefore Closs Image: Close to surroundings11b(i)Releases energy to surroundingsType of Reaction Exothermic Endothermic Calcium Calcium Na"Definition Exothermic Reaction which releases energy to surroundings Endothermic Calcium Calcium Na"Type of Reaction which releases energy to surroundings Endothermic Reaction which takes in energy from the surroundings Endothermic Calcium <	ndings Flame Colour Blue-green Red Red
11b(i)Releases energy to surroundingsExothermic Exothermic Endothermic Barium Ba ^{2*} Reaction which releases energy to surroundings Endothermic Reaction which takes in energy from the surrou11b(ii)PotassiumElement Barium Potassium Calcium Calcium Calcium 	Flame Colour Blue-green Red Red
IID(i)to surroundingsExothermicReaction which releases energy to surroundings EndothermicI1b(ii)Potassium $\boxed{Element \ Ion \ Barium \ Ba^{2*} \ Green}$ Potassium $\boxed{Element \ Lilac}$ Calcium \ Ca^{2*} \ Orange-red Sodium \ Na^* \ Yellow $\boxed{Element \ Ion \ Copper \ Cu^{2*} \ Strontium \ Sr^{2*} \ Lithum \ Li^*}$ 11c2.4 $C_{6}H_{12}O_{6} + 6O_{2} \rightarrow 6CO_{2} + 6H_{2}$ Imol \ 0.0125mol \ 0.075mol \ gfm O_{2} = 2x16 = 32g	Flame Colour Blue-green Red Red
$11b(ii) \begin{array}{ c c c c c c c } \hline 10 \ \text{surroundings} & \underline{ endothermic } & \underline{ endothermic } & \underline{ enaction which takes in energy from the surroundings} \\ \hline \hline 11b(ii) \\ \hline Potassium & \underline{ c c c c c c } \\ \hline Potassium & \underline{ c c c c } \\ \hline Potassium & \underline{ c c c c } \\ \hline Calcium & Ca^{2*} & Orange-red \\ \hline Sodium & Na^* & Yellow \\ \hline \hline \\ \hline $	Flame Colour Blue-green Red Red
11b(ii)PotassiumBariumBa ²⁺ GreenPotassiumK'LilacCalciumCa ²⁺ Orange-redSodiumNa*Yellow gfm C ₆ H ₁₂ O ₆ = (6x12)+(12x1)+(6x16) = 72+12+96 = 180gno. of mol =mass gfm=2.4C ₆ H ₁₂ O ₆ + 6O ₂ → 6CO ₂ + 6H ₂ 1mol6mol0.0125mol0.075molgfm O ₂ = 2x16 = 32g	Blue-green Red Red
11b(ii)PotassiumK*LilacCalciumCa ^{2*} Orange-redLithiumLitSodiumNa*YellowIthiumLitgfm C6H12O6 = (6x12)+(12x1)+(6x16) = 72+12+96 = 180gno. of mol =mass gfm= $\frac{2.25}{180}$ = 0.0125mol11c2.4C6H12O6 + 6O2 → 6CO2 + 6H21mol6mol0.0125mol0.075molgfm O2 = 2x16 = 32g	Red Red
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$11c \qquad 2.4 \qquad \begin{array}{c} gfm \ C_{6}H_{12}O_{6} = (6\times12)+(12\times1)+(6\times16) = 72+12+96 = 180g\\ no. \ of \ mol = \frac{mass}{gfm} = \frac{2.25}{180} = 0.0125mol\\ 1mol \qquad 6mol\\ 0.0125mol \qquad 0.075mol\\ gfm \ O_{2} = 2\times16 = 32g \end{array}$	0
11c 2.4 $C_{6}H_{12}O_{6} + \frac{6O_{2}}{6MO_{2}} \rightarrow \frac{2.25}{180} = 0.0125 \text{mol}$ $C_{6}H_{12}O_{6} + \frac{6O_{2}}{6MO_{2}} \rightarrow \frac{6CO_{2}}{6MO_{2}} + \frac{6H_{2}}{6MO_{2}}$ $\frac{100}{0.0125 \text{mol}} = 0.075 \text{mol}$ $gfm O_{2} = 2 \times 16 = 32g$	0
11c 2.4 $\begin{array}{c} C_{6}H_{12}O_{6} + 6O_{2} \rightarrow 6CO_{2} + 6H_{2} \\ 1 \text{ mol} & 6 \text{ mol} \\ 0.0125 \text{ mol} & 0.075 \text{ mol} \end{array}$ $gfm O_{2} = 2 \times 16 = 32g$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
0.0125mol 0.075mol gfm O ₂ = 2×16 = 32g	
gfm O ₂ = 2x16 = 32g	
m_{0} cs = n_{0} of m_{0} s r_{1} = $(10)/5$ s 32 = 240	
12a(i) decreases Element Na Mg Al Si P S Covalent Padius (nm) 160 140 124 114 109 104	Cl
	100
12a(ii) increases Group 1 Element H Li Na K Rb Covalent Padius (nm) 32 130 160 200 215	
ICO(II) Increases Covalent Radius (pm) 32 130 160 200 215	
Group 2 Element Be Mg Ca	Sr
12a(iii) 201 Covalent Radius (pm) 99 140 174 Difference 41 34 27	-
Prediction	201
12b 234 Covalent Radius of Br = 117 picometres (from table)	
Distance between nuclei = 2x covalent radius = 2x117pm = 234pi	n
12c(i) 2,8 sodium atom Na = 2,8,1 ∴ sodium ion Na ⁺ = 2,8	
12 and Na ⁺ has less occupied Particle Na atom Na ⁺ ion	
12c(ii) Na* has less occupied electron shells Particle Na arom Na for	
3 mark answer 2 mark answer 1 mark	answer
Demonstrates a <u>good</u> Demonstrates a <u>reasonable</u> Demonstrates a <u>lim</u>	ited
understanding of the chemistry understanding of the chemistry understanding of the chemistry understanding of the chemistry 12 involved. A good comprehension of involved, making some involved. The candi	
13 Open Question: blogically correct, including a blogically correct, including a blogical blo	
statement of the principles problem is understood. that at least a little	e of the
involved and the application of chemistry within these to respond to the problem. understood.	a subscription of the second sec